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Preface

Microbial denitrification has become a key process in nitrogen losses from topsoils
as well as in the elimination of nitrate from aquifer, sewage and drinking water. As a
global process its extent has obtained additional attention due to the possible role
of NoO in the destruction of the ozone layer in the stratosphere. Although
denitrification was recognized as a microbial "fermentation” process by Gayon and
Dupetit back in 1882, real progress in the understanding of the ecophysiological
prerequisites and conditions of this energy conserving reaction has accelerated
only during the last two decades. Today, ecophysiological rather than purely
physiological views and interpretations prevail more and more. Not until recently
the dominating role of the amount of easily decomposable organic matter for
denitrification, particularly under aerobic conditions, has been recognized as the
essential triggering mechanism. In the field, however, the conditions determing the
onset of relevant denitrification - locally and periodically - are highly complex.in fact
soil moisture regime and nitrate diffusion rate rather than available carbon seem to
play an important role.

The International Workshop on Denitrification in Soil, Rhizophere and Aquifer
held in Giessen (FRG) on March 17 -19, 1989, was intended to assess the state of
art, particularly with respect to

- methods and techniques to evaluate denitrification in situ

- sink and source mechanisms of denitrification products in soils

- direct and indirect effects of plants on denitrification

- denitrification losses caused by manuring and fertilization

- ecological prerequisites and mechanisms of denitrification in subsoil and
aquifer

- ecophysiology and kinetics of denitrification
- organism-specific denitrification products

- modeling of denitrification.
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The major part of the contributions presented at the Workshop in form of key
notes, original papers, panel  discussion (see "future research needs in
denitrification"”) as well as of posters has been compiled in this volume. Both for
participants and other colleagues this brief information may be valuable in
providing an overview of the scientific progress in the field of denitrification and a
useful base for interdisciplinary contacts.

The Organizing Committee of the Workshop wishes to thank all those who made

the Congress and this volume possible. It is particularly gratefu!l for the support
provided in different ways by scientific and commercial organizations.

J.C.G. Ottow

Chairman of the Commission for Soii Biology,
International Society of Sail Science

President of the Organizing Committee
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MEASUREMENT O T CATIO
by

A. Mosier+)S 0. Heinemeyer, and
K. Haider**

INTRODUCTION

Until 1979 methods to directly measure denitrification in the field were
limited (Ryden et al., 1979). Denitrification was measured indirectly by 5y
balance where the difference between the amount of 15y recovered in plants and
soil, plus N leached and N in water run-off and the amount of 15N added was
assigned to denitrification losses (Hauck, 1981). Using this technique,
denitrification is considered responsible for the volatile loss of 20-70% of the
fertilizer N applied to a variety of agricultural systems. In systems, such as
rice fields, direct ammonia flux measurements coupled with 1SN balance suggest
that denitrification losses in flooded soils vary from 10 to 70% of the
fertilizer N applied (Buresh and De Datta, 1989; Freney et al., 1989).

Although fileld estimates of the amount of N denitrified have been made in a
variety of natural and agronomic sites, measurements which directly compare gas
flux with 15N balance measurements are rare. In many instances where these
comparisons were made, the directly measured denitrification losses were less
than those measured by N-balance (Buresh and Austin, 1988; Mosier et al., 1988;
Mosier et al., 1985). At the present time we do not know if there are problems
with either or both direct or N-balance measurements that account for the
frequent lack of agreement of total N loss between methods. Techniques
developed since the late 1970's are now used routinely to measure
denitrification in the field. This paper describes the basic field gas
collection methods, quantification techniques and briefly relates problems
associated with them.

GAS COLLECTION TECHNIQUES

To estimate the amount of N, and N,0 emissions from the soil to the
atmosphere, in most field situations, we must use some sort.of soil surface gas
concentration device. Some version of such devices, chambers, have been used to
estimate the fluxes of a number of gases, including N20 and Ny, from soil. Both
of the common chamber types enclose a distinct volume of air above a known area
of soil and prevent or control emanating gas from mixing with the external
atmosphere. The concentration of NZO, for example, beneath the cover will
increase or decrease whenever there is a positive or negative flux out of the

*UsSDA-ARS, P.0. Box E, Fort Collins, Colorado 80522, USA

*++)Institute for Soil Biology and Institute for Plant Nutrition and Soil
Science, Federal Center for Agricultural Research, Braunschweig, FRG.
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soil. The two chamber types used are those with forced flow-through air
circulation designated as "open soil covers"™ and those with closed-loop air
circulation or no forced air circulation designated as. "closed soil covers".

Closed Chambers. Gas flux from the soil using closed chambers is
determined by periodically collecting gas samples from the chamber and measuring
the change in concentration of a gas with time during the period of linear
concentration change. When nonlinear increases in gas ‘concentration occur flux
can be calculated as described by Hutchinson and Mosier (1981). Reasons for
selecting the closed cover method are typically: 1) very small fluxes can be
measured, 2) no extra equipmeht requiring electrical supply is needed, 3) there
is diminished disturbance of the site due to the short time a cover has to be in
place for each gas flux estimate, 4) the chambers are simple to construct, 5)
they are easy to install and to remove thus giving the opportunity to measure
different locations at different times with the same equipment, and 6) they are
relatively inexpensive to prepare.

Problems generally attributed to closed soil covers include: 1)
concentrations of gas in the énclosure atmosphere can build up to levels where
they inhibit the normal emission rate. This problem can be limited by using
short collection periods and correction equations (Jury et al., 1982; Hutchinson
and Mosier, 1981). 2) closed covers either eliminate or alter the atmospheric
pressure fluctuations which normally are found at the soil surface due to the
natural turbulence of ‘air movement. These fluctuations can pose a "pumping
action™ on the surface layer of soil which increases soil air movement, thus a
totally closed cover may underestimate the flux that would have occurred without
the cover in place. An appropriately designed vent does, however, allow
pressure equilibration in and outside the chamber (Hutchinson and Mosier, 1981).
3) Pressure changes in the soil can be caused by inserting the chamber into the
soil. This problem may be overcome by installing collars in the soil that are
normally open to the atmosphere and to seal the cover to the collar when the
chamber is used (Seiler and Conrad,b1981; Duxbury etbal., 1982). Alternatively,
after initially ihserting the chambers into the_soil the chambers may be removed
for a brief time to allow dissipation of any NZO released during thg disturbance
and then replaced (Livingston et al., 1988). 4) temperature changes in the soil
and atmosphere under the chamber can occur. Temperature differences within and
outside the chamber can be reduced by insulating the chamber and covering it
with reflective material. : )

Open Chambers. Open soil covers used by Ryden et al., (1979) and Denmead
(1979) are coupled to the atmosphere via an air inlet through which outside air
is continuously drawn into the cover and forced to flow over the enclosed soil
surface. The gas flux from the soil surface can be ealcglated from
concentration difference, flow rate and area covered by the open soil cover.

The main advantage of an open cover is that they maintain environmental
conditions close to those of the uncovered field. Open chambers are, however,
sensitive to pressure deficits inside the chamber caused by the induced air flow
" which may cause artificially high fluxes. If even small pressure deficits
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occur, induced mass flow of the gas into the cover will lead to overestimation
of the gas flux. This can be readily overcome by insuring that the size of the
inlet gas orifices are large compared to size of outlet (Denmead, 1979). An
additional consideration in open cover sSystems is the time required for gas
concentration in the soil and chamber air to adjust to new equilibrium values.
Measurements assume an equilibrium flux between soil atmosphere and chamber
atmosphere, so estimates will be erroneous during the time of equilibration.

METHODS FOR QUANTIFYING DENITRIFICATION IN THE FIELD

During the past 10 years denitrification has been estimated in the field
utilizing the acetylene inhibition technique (Benckiser et al., 1985; Mosier et
al., 1985; Ryden et al., 1979; Ryden and Dawson, 1982) and by 15y techniques
(Buresh and Austin, 1988; Craswell, et al., 1985; Mosier et al., 1986; Mulvaney
and Vanden Heuvel; Rolston et al., 1982; Siegel et al., 1982). We'll briefly
describe the techniques and refer you to Mosier and Heinemeyer, 1985, for more
detailed discussion.

Acetylene Inhibition. The discovery that acetylene blocks the reduction of N,0
to N2 (Fedorova et al., 1973) led to development of techniques to directly
measure denitrification in the field (Ryden et al., 1979). The method is
applicable in both fertilized and unfertilized field sites and is adaptable to
both in situ and core collection methods, The measurement of N, and N20
separately involves allocating two "identical™ soil samples and treating the
atmosphere of one soil with 0.1 to 10% acetylene and adding no acetylene to the
atmosphere of the second soil. The soils are incubated for a few hours under
identical conditions and the N20 produced from each soil is analyzed by gas
chromatography. The difference in N20 produced between the acetylene~treated
soil and the untreated soil represents the amount of N, produced during
denitrification. If only total Ny + N-0 is required then the nonacetylene-
treated soil can be eliminated.

There are at least three variations of this basic technique that have been
applied to field estimates of denitrification. Ryden et al., (1979) and Ryden
and Dawson (1982) use the method to make in situ measurements by employing a
dual flow through (open) soil cover technique where they subjected the soil
under one chamber to a flow of acetylene and compared. the amount of N20
collected on molecular sieve from acetylene-treated plot to the untreated plot.
Denmead (1979) described an open chamber method where he continuously monitored
N-0 evolution from the soil using infrared gas analysis.

Another approach to estimating denitrification in field soils with
acetylene inhibition is demonstrated by Aulakh et al., (1982). They collected
soil cores in perforated aluminum cylinders and placed the cores into jars,
injected 5 atmosphere per cent acetylene, incubated the soils at field
temperatures for 24 hrs, then analyzed the jar head space for N,0. Gas flux
rates were calculated based on soil surface area and time. Parkin et al.,
(1984) and Rice and Smith (1982) collected intact soil cores from the field and
took them to the laboratory where the cores were exposed to acetylene by first
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irrigating the core with acetylene-saturated water then flowing acetylene-
containing air over the soil core surface. Increase in headspace NZO
concentration were measured by GC.

" side Reactions of CoHy -in Soil Systems. Acetylene affects other process in
the soil as well as nitrous oxide reduction. Some of the common reactions
affected by the gas are: 1) inhibitiop of methane oxidation, 2) microbial
utilization of CoH, as a carbon source, 3) inhibition of nitrification, and 4)
acceleration of scil carbon mineralization resulting in an increased N03'
reduction rate. Most of these potential problems can be overcome with
appropriate experimental design (Ryden and Dawson, 1982; Ryden et al., 1987).
Diffusion of CoHy throughout the soil profile can also be a problem in
quantifying total denitrification that is exacerbated by increasing soil water’
content (Chalamet et al., 1989). V

15N Techniques. Denitrification can also be estimated in N-fertilized
fields utllizing 15N. The methods involve applying highly enriched 13y (> 20
atom ¥ 1°N) to a specified plot of soil and using a closed soil cover method to
confine the gases evolved from the soil during a prescribed time period. When
Ny formed from denitrification of 15N—labeled nitrate is evolved into this
confined atmosphere that already contains air (783 N,), the T8y and 15N atoms in
the entire mixture are not distributed randomly among the Ny molecules. Hauck
and Bouldin (1961) used this non-equilibrium condition to calculate ‘the amount
of N2 evolved from the soil. Their technique permits a quantitative estimate of
the relative contributions to the gas evolved from the soil into the chamber by
both the added 15N—labeled fertilizer and from native soil N. (Mulvaney and )
Vanden Heuvel, 1988; Mosier et al., 1986). The evolution of N, from the applied
fertilizer can be measured by analyzing the chamber head space gas to determine
an atom % 5y (Rolston et al., 1982).

Since the 15N in the N, is not randomly distributed it is necessary to
determine the amount of masses 28, 29, and 30 in the sample. If a triple
collector mass spectrometer is not available, the isotopic arrangement of the N2
can be randomized by an arcing method described by Craswell et al., (1985) that
has been used in field studies (Buresh and Austin, 1986). '

Problems associated with 1N methods. Measuring denitrification using '°N
is expensive as 5N labeled chemicals cost about $125-250/g of 15N and require a
mass, spectrometer for analysis. The denitrification method described by Hauck
and Bouldin (1961) and updated by Siegel et al., (1982) theoretically requires
that the nitrate pool undergoing denitrification be uniform with respect to 15N
distribution. It is highly unlikely that a uniform distribution of 1°NO3” could
exist in a soil where mineralization, immobilization and plant N uptake of
nitrogen occurs. Mulvaney and Vanden Heuvel (1988) show, however, that
"appreciable error did not necessarily arise when the method was used to measure
denitrification of nitrate that was not isotopically uniform.™
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Methods to separate N,O produced from
denitrification and nitrification

Klemedtsson, L. and Hansson, G.I. *!
INTRODUCTION

Since the early 1970s there has been concern about the adverse
environmental effects of N,0. The release of N,0 has a major effect on the
atmospheric ozone layer which protects living organisms from harmful
ultraviolet radiation (Crutzen, 1981). N,0 also has a significant effect on
the earth’s thermal balance through the absorption of reradiated longwave
infrared radiation, the "greenhouse effect" (Lacis et al., 1981). The yearly
increase of N,0 in the atmosphere is presently about 0.2 % (Weiss, 1981).

The production as well as the consumption of N,0 in the biosphere is
dominated by biological processes. The gas can be produced during
denitrification (Knowles 1982), nitrate-respiration by non-denitrifying
bacteria (Smith& Zimmerman, 1981), autotrophic nitrification (Poth&Focht,
1985), heterotrophic nitrification (HynesaKnowles, 1982), and assimilation of
nitrate by yeasts and other fungi (BleakleysTiedje, 1982). Only during
denitrification can significant amounts of N,0 be consumed

In agro-ecosystems, denitrification and nitrification are assumed to
dominate N,O production. The importance of heterotrophic nitrification in
agricultural soils has been assumed to be low (Focht&Verstrate 1977), but
Kuenen et al.,(1988) show that 